
A Novel Approximation for Multi-Hop Connected

Clustering Problem in Wireless Sensor Networks

Jun Li∗, Xudong Zhu∗, Xiaofeng Gao∗§, Fan Wu∗, Guihai Chen∗, Ding-Zhu Du†, Shaojie Tang†

∗Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, P.R.China
†University of Texas at Dallas, Richardson, TX 75080, USA

lijun2009@sjtu.edu.cn, nongeek.zv@gmail.com, {gao-xf, fwu, gchen}@cs.sjtu.edu.cn,

dzdu@utdallas.edu, tangshaojie@gmail.com

Abstract—Wireless sensor networks (WSNs) have been widely
used in plenty of applications. To achieve higher efficiency for
data collection, WSNs are often partitioned into several disjointed
clusters, each with a representative cluster head in charge of the
data gathering and routing process. Such a partition is balanced
and effective if the distance between each node and its cluster
head can be bounded within a constant number of hops, and
any two cluster heads are connected. Finding such a cluster
partition with minimum number of clusters and connectors
between cluster heads is defined as minimum connected d-hop
dominating set (d-MCDS) problem, which is proved to be NP-
complete.

In this paper, we propose a distributed approximation al-
gorithm, named CS-Cluster, to address the d-MCDS problem.
CS-Cluster constructs a sparser d-hop maximal independent set
(d-MIS), connects the d-MIS and finally checks and removes
redundant nodes. We prove the approximation ratio of CS-
Cluster is (2d+ 1)λ, where λ is a parameter related with d but
is no more than 18.4. Compared with the previous best result
O(d2), our approximation ratio is a great improvement. Our
evaluation results demonstrate the outstanding performance of
our algorithm compared with previous works.

I. INTRODUCTION

Wireless sensor network (WSN) is a kind of self-organized

communication system consisting of many small-sized, in-

expensive, and battery-powered sensors. Since such sensors

can be remotely deployed in large numbers and operated

autonomously in unattended environments, WSNs have been

widely used in a lot of applications such as health-care in-

dustry, food industry, disaster management, battlefield surveil-

lance, etc. In these applications, the task of each sensor is

to collect the information in its surrounding environment and

transmit the corresponding data to the base stations of WSNs.

Over the past decades, a lot of related researches have studied

data gathering and transmission problems [1]–[7].

Because the unattended environments of WSNs generally

make it quite difficult to recharge sensor batteries, sensors in

such environments are energy constrained. Therefore, energy

conservation is always an important factor for extending the

lifetime of WSNs. In the literature, a lot of researches have

been done to extend the lifetime of WSNs [6], [8]–[11]. In

addition, sensor nodes also have constraints on communication

§X.Gao is the corresponding author.

bandwidth, communication range, and storage space. The

communication range restricts the transmission capacity of a

sensor within a localized area in the network. Thus, a message

may be transferred multiple times through several intermediate

nodes along a path to its destination. This kind of flooding-

like routing scheme causes huge amount of traffic collision,

message redundancy, and energy consumption.

In order to overcome these shortcomings, an efficient ap-

proach named clustering has been widely used by many

researchers. We can divide a given WSN into several disjointed

clusters, each with a cluster head to take charge of the data

gathering process and the communications inside or outside

the cluster. In this mechanism, any ordinary node in the WSN

only needs to collect information and send the data to its

corresponding cluster head, which saves a lot of energy by

avoiding many redundant message forwarding processes. The

most important part for clustering scheme is to efficiently

partition the given WSN into disjointed clusters and many

algorithms were proposed to achieve this purpose. In [12],

through coordination of nodes in the same cluster to efficiently

reduce the redundant sensing area, the authors proposed a

clustering algorithm to optimize the energy conservation. Load

balancing is also a crucial issue for clustering mechanisms. Y-

ounis et al. [13] aimed at setting equal-sized clusters to balance

the work load of each cluster. By setting a hop threshold k,

researchers also discussed k-hop clustering problem [14]–[16]

requiring that each node in the network should not be more

than k hops far from its cluster head.

The average size of clusters is an important metric to

estimate the performance of a WSN. If the cluster size is too

large, then it is difficult for the cluster head to manage the

cluster. In contrast, if the cluster size is too small, then there

will be too many clusters in the WSN, which downgrades the

performance of clustering strategy. An effective way to control

the average size is to set a parameter d, and to let each cluster

head only take charge of its d-hop neighbors. To achieve better

communication between clusters, any pair of the cluster heads

should be able to communicate with each other directly or

through the relay of the other cluster heads. Thus the problem

becomes finding an effective partition with minimum number

of clusters w.r.t. d, while each cluster head can generate a

2015 IEEE 35th International Conference on Distributed Computing Systems

1063-6927/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDCS.2015.76

696

connected subgraph with the smallest number of additional

connectors.

More precisely, we use a graph G = (V,E) to model a

WSN, where V is the set of sensors in the network while

(u, v) ∈ E iff u and v communicate with each other. In

this paper, we consider a homogeneous network, where each

node has the same communication range. So the graph can be

formed as a unit disk graph (UDG). We focus on constructing

a connected d-hop clusters for G. Actually, the set of cluster

heads can be considered as a d-hop dominating set (d-DS).

Consequently, our task is to find a connected d-DS (d-CDS) for

a given graph. Moreover, we hope the cardinality of the d-CDS

is minimized in order to reduce the maximum possible number

of redundant messages, which corresponds to a minimum

connected d-hop dominating set (d-MCDS) problem.

In all, our goal is to find a d-MCDS for a UDG G = (V,E).
In this paper, we propose a three-phase algorithm named

Connected Sparse Clustering Strategy (CS-Cluster) to solve

this problem. The first phase of CS-Cluster is to select a d-hop

maximal independent set (d-MIS). Then, some extra nodes are

added to connect the d-MIS into a d-CDS. In order to further

reduce the size of the obtained d-CDS, the third phase is to

check and remove redundant nodes. Our contributions in this

paper are summarized as follows:

• We propose a novel approximation algorithm for d-

MCDS problem, and prove that its approximation ratio is

(2d+ 1)λ, where λ is a parameter related with d but no

more than 18.4. Our algorithm improves the previous best

ratio of O(d2) into O(d). Moreover, evaluation results

also exhibit the outstanding performance of CS-Cluster

compared with the closest related work.

• We theoretically analyze the upper bound of the size

of d-MIS (denoted as α(G)) w.r.t. the size of d-MCDS

(denoted as γ(G)) for a UDG G = (V,E). We prove that

the ratio of α(G) and γ(G) is bounded by λ. Compared

with the previous best result O(d), we reduce it to O(1),
which is a huge improvement.

• CS-Cluster is a distributed algorithm, which is more

suitable for applications in WSNs. With thorough dis-

cussions, we conclude that CS-Cluster not only fits for

UDG model, but also for general network model.

Our paper is organized as follows. Section II provides some

preliminaries. In Section III, we introduce the related works. In

Section IV, we describe our algorithm CS-Cluster for d-MCDS

problem. In Section V, we analyze the upper bound of d-MIS

for a given graph. Afterwards, we analyze the performance of

CS-Cluster in Section VI and Section VII gives the simulation.

Finally, Section VIII concludes this paper.

II. PRELIMINARIES

In this section, we will introduce some definitions and then

summarize the symbols used in the paper. Firstly, for a given

graph G = (V,E), we give several definitions.

Definition 1 (UDG). G is a Unit Disk Graph (UDG) if

∀u, v ∈ V , there is an edge (u, v) ∈ E if and only if

dis(u, v) ≤ 1. Here dis(u, v) is the Euclidean distance

between u and v.

Definition 2 (d-DS). D ⊆ V is a d-hop Dominating Set (d-

DS) of G if ∀v ∈ V , either v ∈ D or ∃u ∈ D such that there

exists a path within d-hop between u and v.

Definition 3 (d-IS). A d-hop Independent Set (d-IS) of G is

a subset I ⊆ V such that ∀u, v ∈ I , there does not exist a

path within d-hop between u and v.

Definition 4 (d-MIS). A d-IS I is a d-hop Maximal Inde-

pendent Set (d-MIS) if ∀v ∈ V \I , I ∪ {v} is no longer a

d-IS.

Many researchers consider finding a d-MIS instead of a d-

DS for graph G, since the former is easier and more efficient.

Thus we need the following lemma.

Lemma 1. For any given graph G, a d-MIS is also a d-DS.

Proof: For a d-MIS I and any node v ∈ V \I , I ∪ {v}
is no longer a d-MIS, which means v is dominated by some

node in I in d hops. As a result, I is a d-DS.

Definition 5 (d-CDS). A subset C ⊆ V is a Connected d-

hop Dominating Set (d-CDS) of G if C is a d-DS and the

subgraph induced by C is connected.

In addition, we need to define the Voronoi Division which

will be referred in next sections.

Definition 6 (Voronoi Division). Let S be a set of nodes in

Euclidean space. For each node v ∈ S, the corresponding

Voronoi cell V (v) is the set of points that are closer to v than

to other nodes of S, which means

V (v) = {w | for every u ∈ S\{v}, dis(v, w) ≤ dis(u,w)}.
The Voronoi diagram is the partition induced by Voronoi cells.

In order to simplify our problem, we make some assump-

tions. First, we focus on WSNs located at 2-dimensional space.

Second, each sensor in the network has the same commu-

nication range and implements efficient scheduling strategy

with multiple available frequencies, such that no collision

occurs in the procedure of message transmitting. Under these

assumptions, we define d-MCDS problem as follows.

Definition 7 (d-MCDS). For a given UDG G = (V,E), find-

ing a d-CDS with minimum size is called d-MCDS problem.

Table I introduces and summarizes the symbols, functions,

and notations that will be used in the following sections.

III. RELATED WORKS

The minimum connected dominating set problem (namely,

1-MCDS problem) is a classic NP-complete problem. Over

the past decades, there are a lot of researches related to it.

In [17], Clark et al. first proved that MCDS problem is NP-

complete even in UDG. To obtain a better feasible solution,

Wan et al. [18] devised a two-phase algorithm with constant-

factor approximation ratio. The first part of their algorithm is

697

TABLE I
SYMBOLS, NOTATIONS, AND FUNCTIONS IN THIS PAPER

Notation Explanation

dis(u, v) the Euclidean distance between u and v.
|S| the cardinality of set S.

Nr(v) the r-hop neighbor set of v with nodes which are
at most r-hop away from v.

Nr(S) the r-hop neighbor set of S with nodes which are
at most r-hop away from some node in S.

diskr(v) the disk with center v and radius r.
Ar(v) the area of diskr(v).
Ar(S) the area of ∪v∈Sdiskr(v)

Area(P) the area of geometrical shape P .

to select an MIS. Then, it adds some extra nodes to connect

the MIS into a CDS. Later, a lot of related works were

done to improve the approximation ratio of this two-phase

algorithm [19]–[21]. The ratio of the size of MIS and the size

of MCDS in graph G is crucial to estimate the algorithm’s

performance. The upper bound of such ratio is also called the

theoretical bound to approximation CDS. Up to now, the best

result for the theoretical bound is 3.399 by Du et al. [22].

The problem of d-MCDS is an extension of 1-MCDS

problem. In 2000, Vuong et al. [23] proved that d-MCDS

is NP-complete in general graph by a reduction from 3-SAT

problem. Later, Nguyen et al. [24] proved that d-MCDS is NP-

complete even in UDG. A lot of heuristic algorithms were

proposed to find a feasible solution of d-MCDS [25], [26].

However, these algorithms all lacked approximation analysis.

In 2010, Li et al. [27] proposed an approximation algorithm

on finding minimum two-connected d-hop dominating set.

They gave an approximation ratio of O(log |V |). Later, Gao

et al. [28] presented a two-phase distributed algorithm to

compute d-CDS in UDG, and they gave a constant-factor

approximation ratio of O(d3). Zhang et al. [29] improved

the approximation ratio into O(d2). In 2014, Zhu et al. [30]

proposed the first constant-factor approximation for d-MCDS

in 3-dimensional space.

There are many other related works for the clustering

problem. Wang et al. [31] proposed a PTAS to minimize the

average hop distance from any nodes to cluster heads in 2D

sensor networks without connectivity property. Kim et al. [32]

discussed how to find the locations of k sinks such that the

maximum distance from other nodes to sinks is minimized.

IV. CS-CLUSTER FOR d-MCDS PROBLEM

In this section, we introduce our algorithm named Con-

nected Sparse Clustering Strategy (CS-Cluster) for d-MCDS

problem in G = (V,E). CS-Cluster consists of three phases.

First, we will construct a sparse d-MIS. Second, we will

connect the d-MIS into a d-CDS by adding some extra nodes

called connectors. Finally, we will remove redundant nodes

from the obtained d-CDS to further reduce the size of d-CDS.

A. Constructing a d-MIS

According Lemma 1, we can select a d-MIS as d-DS for a

given graph. And we usually select d-MIS nodes one by one.

For example, assume the current d-IS is S, then we select a

node from V \ ∪v∈S Nd(v) and add it to S. We continue this

process until S is a d-MIS. In literature such as [28]–[30],

researchers often restrict that the new node is d+1 hops away

from S. However, if we remove such restriction, we can form

a sparser d-MIS. An example can be shown in Fig. 1 where

d = 2. If we implement traditional algorithms, we will select

nodes {4, 9, 12, 15, 16} with size 5. However, if we ignore

such restriction, we can select a set {4, 11, 16} with size 3.

Fig. 1. The input graph of a 2-MCDS problem with 17 nodes.

Based on this observation, we propose an efficient distribut-

ed algorithm to select a sparser d-MIS as Alg. 1 shows. The

main idea is to select a d-hop dominator as far as possible

to the current d-IS. This strategy is also helpful to select

connectors more flexibly in the next step.

In Alg. 1, we use dominatee(u) to denote the number of

u’s white neighbors within d hops in the current round. This

algorithm is processed round by round. Obviously, for any

white node u, if dominatee(u) is the maximum compared

with those values of nodes in Nd(u), selecting node u can

cover the most white nodes compared with selecting any node

in Nd(u). Since Alg. 1 is a distributed algorithm, there may

be more than one nodes to be selected in each round. Once

a white node is selected and is colored black, it may affect

the states of nodes within its d hops, including the value of

dominatee(·). Considering that, for any node u, we restrict

that only one white node in N2d(u) is selected in one round.

Besides, we use set dominator(u) to denote the nodes

which can dominate node u. These variable will be used in

later. The pseudo-code of this procedure is presented in Alg. 1.

Algorithm 1: Constructing d-MIS

In each round, for every white node v in V :
1 Compare the value of dominatee(v) with dominatee(u),

where u ∈ N2d(v). Use node id to break ties in the procedure
of comparison;

2 if dominatee(v) is the largest then
3 Color v black;

4 Send message to each node u in Nd(v), and tell it to add
v’s id to dominator(u). If u is white, color it grey;

5 Send message to each node w ∈ N2d(v), and tell it to
check and update the value of dominatee(w);

Fig. 2 shows the corresponding 2-MIS after processing

Alg. 1 for the 2-hop MCDS problem in Fig. 1.

698

Fig. 2. The result after processing Alg. 1. Initially, dominatee(4) and
dominatee(11) are the largest respectively, compared with nodes within
their 4-hop neighbors. Thus, we color node 4 and 11 black and all their
neighbors within 2 hops {1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15} grey. In
the second round, both of two white nodes (node 16 and node 17) have one
white neighbor. We break tie with smaller id, color node 16 black and color
node 17 gray. Since there are not more white nodes, Alg. 1 terminates.

B. Connecting a d-MIS

After Alg. 1, we get a d-MIS and denote it as M , which

is also a d-DS. In this subsection, we discuss how to connect

it into a d-CDS. Before introducing the algorithm, we first

introduce some notations and definitions that will be used in

this section.

For a given graph G = (V,E), any two nodes u, v ∈ V
are “k-hop connected” to each other if there exists a path in

graph G between them and the length of the path is at most

k. A subset S ⊆ V is a “k-hop connected d-hop dominating

set” iff:

• S is a d-hop dominating set of graph G.

• For any vertex u ∈ S, there exists at least one vertex

v ∈ S such that u and v are k-hop connected.

In addition, for a graph G = (V,E), a subset S ⊆ V is a

“k-hop connected component” iff:

• For any vertex u ∈ S, there exist at least one vertex v ∈ S
such that u and v are k-hop connected.

• For any other vertex v ∈ V \S, there does not exist any

vertex u ∈ S such that u and v are k-hop connected.

For a vertex subset C ⊆ V , let fk(C) be the number of

k-hop connected components of the induced subgraph G[C].
∀v ∈ V , define

−Δvfk(C) = fk(C)− fk (C ∪ {v}) ,
representing the reduced number of k-hop connected compo-

nents in C when v is inserted into C.

Next, we will start to introduce our algorithm which can

connect M into a d-CDS. The algorithm in this subsection

is processed round by round. In the ith round, a subset Ci

is selected from V \⋃j<i Ci ∪M such that
⋃

j≤i Cj ∪M is

a r(i)-hop connected d-hop dominating set. The definition of

r(i) is:

• r(0) = 2d+ 1,

• r(i) =
⌊
r(i−1)+1

2

⌋
.

Obviously, after Alg. 1, M is an r(0)-hop connected d-

hop dominating set, which means any two nodes in M are

(2d + 1)-hop connected in graph G. When the algorithm in

this subsection terminates, we should get a 1-hop connected

d-dominating set, namely d-CDS. Alg. 2 depicts the detailed

steps.

Algorithm 2: Connecting d-MIS

1 r0 = 2d+ 1;

In the ith round:

2 ri = �
ri−1+1

2
�;

3 Initialize componentNum.(v);

For every grey node v ∈ V :

4 Send messages to nodes in Nri(v) to compute cost(v);
5 After cost(v) is figured out, inform this value to nodes in
Nri(v);
For each iteration in this round:

6 Compare cost(v) with elements in connector(u) where node
u is a black or blue node and u ∈ Nri(v). Use node id to
break ties in the procedure of comparison;

7 if cost(v) is the largest then
8 Color v blue;

9 Send messages to nodes in Nd(v), inform them to add v’s
id to their dominator(·);

10 Send messages to nodes in Nri(v), inform them to change
componentNum.(·) to be the id of node v, or to
recompute the value of cost(·);

When receiving a message informing to

recompute cost(·):
11 Send messages to nodes in Nri(v) to compute cost(v);
12 After cost(v) is figured out, inform this value to nodes in

Nri(v);

For any black or blue node u ∈ V :

When receiving a message from node v to

compute cost(v):
13 Reply with componentNum.(u) and the hop distance between

u and v;
When receiving a message from node v
informing the value of cost(v):

14 Store cost(v) in connnector(u);
When receiving a message from a grey node v
to compare cost(v):

15 If cost(v) is the largest among all elements in connector(u),
reply with “YES”. Use node id to break ties in the procedure
of comparison. Otherwise, reply with “NO”;
When receiving a message from node v
informing to change componentNum.(u):

16 Change componentNum.(u) as it is required;
17 Inform u’s black and blue neighbors within ri hops, not

including v, to change their componentNum.(·) to be
componentNum.(u);

18 Inform nodes in Nri(u) to recompute their cost(·);

To make the size of Ci as small as possible, we should

choose the most efficient nodes that makes
⋃

j≤i Cj ∪M be

an r(i)-hop connected d-hop dominating set. An intuitive idea

is to iteratively choose nodes that can reduce the most number

of r(i)-hop connected components. In order to make our

algorithm more economical, we also add another requirement

in this procedure.

To better understand our algorithm, we first assume that

each node knows the global information. At the beginning

of the tth iteration of the ith round, Ci contains t − 1
nodes. Assume C =

⋃
j≤i Ci ∪ M . For a node v in V \C,

it reduces the number of r(i)-hop connected components by

−Δvfr(i)(C). Consequently, there exist −Δvfr(i)(C) shortest

699

paths that connect node v to those −Δvfr(i)(C) components

respectively. We use no.(v) to denote the total number of

nodes in those shortest pathes except two end points (but

includes v). Moreover, we use cost(v) to denote the cost of v
under the current state and its definition is as follows.

cost(v) =
−Δvfr(C ∪ Ci)

no.(v)
.

In every iteration, we select the node with the largest cost. Note

that the additional requirement of cost(v) is much crucial to

guarantee and improve the performance of our algorithm.

Since our algorithm here is a distributed algorithm, each

node run the algorithm locally. As a consequence, in each

iteration of some round, there may be more than one node

to be selected. Besides, once a node is selected, its state,

such as its color, will changed. Such change will further

affect states of its neighbors. Hence, nodes selected in a same

iteration of some round may cause collisions. In order to avoid

that, we need to do more than the simpler case above. First,

each node has a local variable componentNum.(·), which

records the component the node belongs to. The component

here is actually ri-hop connected component. Initially, at the

beginning of each round in Alg. 2, for any node u, the value

of componentNum.(u) equals to the id of node u. Then,

each node informs its value of componentNum.(·) within ri
hops. For any two nodes u, v, which are within ri hops to each

other, their componentNum.(·) are set to be the smaller id
of them.

Before the first iteration of the ith round, for each grey

node v, node v sends messages to nodes in Nri(v) to compute

cost(v). Once a black or blue node receives such a message,

it replies that with its value of componentNum.(·) and the

hop distance between itself and the sender of such message.

With these information, node v can figure out cost(v). Then

v broadcasts cost(v) to nodes in Nri(v). All black and

blue nodes in Nri(v) store cost(v) in their local variables

connector(·).
In each iteration of the ith round, each grey node v

compares cost(v) with elements in connector(w) where w
is a black or blue node and w ∈ Nri(v). If cost(v) is the

largest, v is selected as a connector and colored blue. Once a

node v is selected as a connector, all the black and blue nodes

in Nri(v) set their componentNum.(·) to be the id of node

v. Of course, once a black or blue node u changes the value

of componentNum.(u), it informs all those nodes whose

componentNum.(·) are the same with componentNum.(u)
to set their componentNum.(·) as componentNum.(u).
Besides, the new component informs its all grey neighbors

within ri hops to update their cost(·) and further update some

values of connector(·).
An example of Alg. 2 is shown in Fig. 3.

Next, we prove the correctness of Alg. 2. Initially, the input

M is a d-MIS, so fd+1(M) = |M | and f2d+1(M) ≤ |M |.
According to the definition of d-MIS, the nodes in d-MIS can

be ordered in a way such that each node is at most (2d+1)-hop

away from one of its predecessors. We call such a property as

Fig. 3. The result after processing Alg. 2. At the beginning of the first round,
there are three 3-hop connected components ({4}, {11}, {16}). We should
3-hop connect these three components into one. At this time, the values of
nodes 7, 8, 9, 17 are 1/3, 2/5, 2/5, 1/3 respectively, while all other grey nodes
have value 0. Since node 8 has smaller id than node 9, we color node 8 blue.
Now the 3-hop connected component is only {4, 8, 11, 16}, and thus the first
round terminates. Next, in the second round there are two 2-hop connected
components ({4, 8, 16}, {11}). At this time nodes 9, 10 have the same value
of 1/2 while other grey nodes have value 0. Similarly we color node 9 blue
and terminate the second round. When the third round starts, there are four
1-hop connected components ({4}, {8, 9}, {11}, {16}), while nodes 7, 17,
10 have the same value of 1 and other grey nodes have value 0. Thus, we
select node 7 in the first iteration of this round. Then, select 10 in the second
iteration, and 17 in the third iteration. After that, Round 3 terminates. At this
time r = 1. Consequently, Alg. 2 completes its task.

“(2d + 1)-hop connection property”. Hence, easy to see that

f2d+1(M) = 1. Actually we have Lemma 2 as follows.

Lemma 2. For any subset S, it has k-hop connection property

if and only if fk(S) = 1.

Proof: It is clear that S has k-hop connection property

if and only if the subgraph induced by S is k-hop connected,

which is true when fk(S) = 1.

Lemma 3. In Alg. 2, the ith round will terminate when

fr(i)(
⋃

j≤i Cj ∪M) = 1.

Proof: When i = 0, Lemma 3 holds obviously as we have

shown above. Assume Lemma 3 holds for the ith round where

i ≤ 0, we show that it also holds for the (i+ 1)th round.

Obviously, the (i+ 1)th round starts with fr(i)(
⋃

j≤i Cj ∪
M) = 1. In this round, we need to connect all those r(i+1)-
hop connected components into only one r(i+1)-hop connect-

ed component. It is clear that as long as fr(i+1)(
⋃

j≤i+1 Cj ∪
M) > 1, there must exist more than one r(i+1)-hop connected

components. And these r(i+1)-hop connected components are

r(i)-hop connected because the set
⋃

j≤i Cj∪M has the r(i)-
hop connection property. Thus, there must exist two r(i+1)-
hop connected components which are r(i)-hop connected, and

a path of length at most r(i) exists between them. The middle

node in this path is at most � r(i)+1
2 	 = r(i + 1) away from

these two components. So it can connect these components

into one. Thus, at each iteration in the (i + 1)th round, the

algorithm can always find a satiable node that can reduce the

number of r(i + 1)-hop connected components by at least

1. Therefore, Alg. 2 will continually execute until the round

reaches the final state fr(i+1)(
⋃

j≤i+1 Cj ∪ M) = 1. Then

Lemma 3 holds.

Theorem 1. Alg. 2 connects a d-MIS into a d-CDS.

Proof: According to Lemma 3, Alg. 2 ends up at

700

f1(
⋃

j Cj ∪M) = 1, which means the subgraph induced by⋃
j Cj ∪M is connected. On the other side, set M alone can

dominate V . Thus,
⋃

j Cj ∪M is a d-CDS.

C. Removing the Redundant Nodes

After the first two phases, we can obtain a d-CDS for a

given graph and denote it as C. However, there may exist a

number of redundant nodes. A node v in d-CDS is redundant

iff:

• Every node that v dominates have at least one alternative

dominator.

• The subgraph induced by C − {v} is connected.

The second requirement above can be analyzed in details.

For any node v ∈ C, there exist two situations to discuss.

First, in the subgraph G[C] induced by C, if v is a leaf node,

namely v’s degree in G[C] is one, then removing v has no

effects on the connectivity of the subgraph G[C−{v}] induced

by C − {v}. Secondly, if v is connected by more than one

connectors, namely v’s degree in G[C] is more than 1, then the

subgraph G[C−{v}] is connected only when these connectors

are connected.

Based on this, we can further reduce the size of d-CDS by

Alg. 3. Obviously, for Alg. 3, the most important work is to

decide whether a black node in C is redundant. According

to the analysis above, we can determine that by checking the

corresponding two requirements.

To check the first requirement, for any black node v, v sends

messages to its grey neighbors within d hops and asks whether

they have alternative dominators. Once a grey node u receives

such a message, it will check its local variable dominator(u)
which stores ids of nodes that can dominate u in d hops. If

dominator(u) contains the id of the sender of the message,

u sends a positive reply. Otherwise, u sends a negative reply.

Next, we discuss how to valid the second requirement. Since

C is already a connected set, all nodes in C have the same

value of componentNum.(·). And we call the corresponding

component as the final component. For any black v, v sends

messages to its black and blue neighbors in N1(v) and asks

whether they can connect the final component by some alter-

native nodes. Once another black or blue node u receives such

a message, it will check whether u’s black or blue neighbors in

N1(d) have the same value of componentNum.(u). If there

exists at least one such neighbor, u sends a positive reply.

Otherwise, it sends a negative reply.

The pseudo-code of this pruning algorithm is presented in

Alg. 3.

Fig. 4 is an example to illustrate the performance of Alg. 3

after processing Alg. 1 and Alg. 2 for Fig. 1.

V. AN UPPER BOUND OF d-MIS SIZE FOR A UDG G

To analyze the performance of CS-Cluster, we need to firstly

discuss the upper bound of d-MIS size for a given graph.

Given a UDG G = (V,E), let α(G) denote the size of d-MIS

in G and γ(G) the size of d-MCDS in G. Since the ratio of

α(G) and γ(G) is crucial to estimate the performance of our

Algorithm 3: Removing Redundant Dominators

In each round, for every black node v:

1 v sends requests to grey nodes in Nd(v) and asks whether they
have some alternative dominators;

2 v sends requests to black and blue nodes in N1(v) and asks
whether they can connect to the final component by some
alternative nodes;

3 If all the replies are positive, it decides that it is redundant;
4 if v is redundant then
5 Color v as grey;
6 foreach u in v’s 1-hop blue neighbor set do
7 if u connects to only one blue or black node then
8 Color u as black;

9 Update the local information for nodes in Nd(v);

Fig. 4. The result after processing Alg. 3. In the first iteration, there are three
black nodes, nodes 4, 11, 16. By checking, we find every node dominated
by node 16 has alternative dominators (themselves). Besides, node 16 is
connected to only one blue node (node 17). Thus, node 16 is redundant.
Remove it from C and color it grey. Moreover, the degree of node 17 in
G[C] at this time is one. Thus, color node 17 black. In the second iteration,
we have three black nodes, nodes 4, 17, 11. Similarly, we find that node 17
is redundant and remove it. Since the blue neighbor of node 17 is node 8
and the degree of node 8 is not 1, we do not change the color of node 8.
Consequently, we have two black nodes, nodes 4, 11. By checking, neither
of them is redundant. Thus, Alg. 3 terminates.

algorithm, in this section we will discuss the upper bound of

this ratio from two perspectives.

A. Voronoi Division and Euler’s Formula

Assume that the d-MCDS of G is M and the d-MIS with

maximum size is I . Obviously for any two nodes u, v ∈ I ,

the Euclidean distance between them is greater than 1. Thus,

disk0.5(u) and disk0.5(v) do not intersect with each other.

Moreover, for any node u ∈ I , disk0.5(u) can be completely

contained in
⋃

v∈M disk(d+0.5)(v). Then the value of α(G)
should be less than A(d+0.5)(M)/A0.5(v). It is easy to figure

out that

Ad+0.5(M) ≤ π(d+
1

2
)2 + (γ(G)− 1)ΔS (1)

where

ΔS = (π − 2θ)(d+
1

2
)2 + (d+

1

2
) sin θ,

θ = arccos

(
1

2d+ 1

)
.

Consequently, we can get an upper bound of α(G). However,

this upper bound is a very rough result and we can improve

it by Voronoi Division.

701

With Voronoi Division, we can partition the region

Ad+0.5(M) into Voronoi cells. For any node u in I , there is a

corresponding Voronoi cell V (u) which contains disk0.5(u).
There are two types of Voronoi cells. If a cell does not

contain any boundary point of Ad+0.5(M), then we call it non-

boundary Voronoi cell. Otherwise, it is a boundary Voronoi

cell. For any non-boundary Voronoi cell, it is a polygon. Let

sk denote the minimum area of Voronoi cell with k edges.

For those boundary Voronoi cells, we also consider them as a

special kind of polygons and let s′k denote the minimum area

of boundary Voronoi cell with k edges. Next, we will first

calculate the values of sk and s′k.

Gao et al. [20] has proved that, if a non-boundary Voronoi

cell V (u) has k edges and k ≤ 6, then the regular polygon with

k edges which is inscribed with disk0.5(u) has the smallest

area. Let Pk be such kind of polygon. If V (u) is a boundary

Voronoi cell with k edges, under two conditions V (u) could

have the minimum area. The first condition is when boundary

arc cut off one edge of Pk as Fig. 5 shows, and we name it as

Ek. The second condition is when boundary arc cut off one

angle of Pk as Fig. 5 shows, and we name it as Ak+1.

A7E6P6

Fig. 5. An example to show the conditions of non-boundary Voronoi cells
and boundary Voronoi cells having the minimum area when k = 6.

Since V (u) with 6 adjacent neighbors is the densest situa-

tion if any two small disks does not intersect with each other,

any non-boundary Voronoi cell V (u) with more than 6 edges

cannot be inscribed with disk0.5(u) any more. Thus, the areas

of that kind of Voronoi cells are greater than s6. Consequently,

we can conclude that si ≥ s6 for i ≥ 7. Similarly, for i ≥ 7,

the area of Ei is greater than the area of E6. And the area of

Ai is greater than the area of A7 for i ≥ 8.

Since non-boundary Voronoi cells have nothing to do with

the boundary arc of Ad+0.5(M), then the value of sk also

has nothing to do with d. It is not difficult to figure out that

the area of Pk is k
4 tan(

π
k) for 3 ≤ k ≤ 6. And the results

are as follows: s3 ≥ s4 ≥ s5 ≥ s6 ≤ s7 ≤ s8 . . . and

s3 = 1.299, s4 = 1, s5 = 0.9082, s6 = 0.8661.

With mathematic deduction, we can figure out the values of

Area(Ak) and Area(Ek) and the results are as follows:

Area(Ak) =
k − 1

4
tan(

π

k − 1
)−(

sinφ

2
+

sin2(φ/2)

tan(θ/2)
− φ

2

)
(d+

1

2
)2 (2)

Area(Ek) =
k

4
tan

(π
k

)
−(

sinφ− φ+
sin2 φ

2

tan θ
2 (d+

1
2)

)
(d+

1

2
)2 (3)

According to Eqn. (2) and Eqn. (3), by numerical methods,

we can conclude that s′i = Area(Ei) for 3 ≤ i ≤ 6 and

s′7 = Area(A7). Moreover,

s′3 ≥ s′4 ≥ s′5 ≥ s′6 ≥ s′7 ≤ s′8 . . .

Specially, when applying d = 1 to Eqn. (2) and Eqn. (3), we

can get the corresponding values of s′k and we denote them

as s′k1. The results are as follows.

s′31 = 1.1781, s′41 = 0.9717, s′51 = 0.8968,
s′61 = 0.8601, s′71 = 0.8550.

On the other side, we observe that the curvature of those

boundary arcs in Fig. 5 will decrease with the increasing of

d. Thus, the area that is cut off by boundary arc from original

regular polygon will also decrease. Consequently, the values

of Area(Ei) and Area(Ai) increase with the increasing of d.

Therefore, we have s′k ≥ s′k1 for 3 ≤ k ≤ 7.

Next, with Euler’s formula we can obtain a better upper

bound for α(G) just as what Du et al. did in [22]. Let m
and n respectively be the number of edges and vertices in the

Voronoi diagram. Let fi and f ′
i be the the number of non-

boundary Voronoi cells with i edges and boundary Voronoi

cells with i edges respectively. By Euler’s formula, we have

1 +
∞∑
i=1

(fi + f ′
i) + n = m+ 2.

Considering the degree of each vertex in Voronoi diagram is

at least 3, we have 3n ≤ 2m. Then we have
∞∑
i=3

(fi + f ′
i) ≥ 1 +

m

3
. (4)

It is clear that each boundary Voronoi cell has at least one edge

which is on the boundary of Ad+0.5(M). Let fout denote the

total number of those edges in the Voronoi diagram. Then

2m = fout +
∞∑
i=3

i(fi + f ′
i)

≥
∞∑
i=3

(ifi + (i+ 1)f ′
i). (5)

Combining Inequalities (4) and (5), we have
∞∑
i=3

(6− i)fi + (5− i)f ′
i ≥ 6.

Considering
∞∑
i=3

(sifi + s′if
′
i) ≤ Ad+0.5(M), we have

∞∑
i=3

((si − (s6 − s′7)(6− i)) fi + (s′i − (s6 − s′7)(5− i)) f ′
i

≤ Ad+0.5(M)− 6(s6 − s′7).

Noting that s6 > s′6, for i ≥ 7, we have

si − (s6 − s′7)(6− i) ≥ si ≥ s6

and

s′i − (s6 − s′7)(5− i) ≥ s′7 + 2(s6 − s′7) ≥ s6.

For 3 ≤ i ≤ 6, we can verify that

si − (s6 − s′7)(6− i) ≥ si − (s6 − s′71)(6− i) ≥ s6,

702

and

s′i − (s6 − s′7)(5− i) ≥ s′i1 − (s6 − s′71) ≥ s6.

Then,

α(G) =

∞∑
i=3

(fi + f ′
i) ≤

Ad+0.5(M)− 6(s6 − s′7)
s6

When d→∞, we have s6 − s′7 → 7
√
3

12 − 1. Hence,

α(G) ≤ Ad+0.5(M)
√
3
2

− 0.0718 (6)

B. A New Upper Bound

Up to now, actually we did not make full use of the property

of d-MIS. What we used for our analysis in Sec. V-A is just

that for any two nodes in d-MIS, their Euclidean distance

is greater than 1. In this subsection, we will analyze the

properties of d-MIS more specifically so that we can get a

better upper bound for α(G).
In [29], Zhang et al. proposed a novel idea to analyze the

upper bound of α(G). And they gave α(G) ≤ βγ(G), where

β refers to how many independent nodes can be contained in

Nd(u) for any node u. The expression of β is

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5, if d = 1,
21, if d = 2,

5 +
4d(d+ 1)

 12�
d− 1

2
	�

, if d ≥ 3.

This result improved the previous upper bound from O(d2) in-

to O(d). Nevertheless, this result can still be greatly improved

and we will show it as follows.

We divide the whole d-hop independent nodes I into two

classes. They are

A = N �d/2�(M) ∩ I = {u1, u2, . . . , ut},
and

B = Nd(M)\N �d/2�(M) ∩ I = {v1, v2, . . . , vs}.
For the first class, we are to show that t ≤ 3.399γ(G)+4.874.

For 1 ≤ i ≤ t, denote the shortest path from ui to M
as Pi and let wi be the last node on Pi before reaching M .

Because N1(M) contains at most 3.399γ(G) + 4.874 1-hop

independent nodes [22], if t > 3.399γ(G) + 4.874, we could

always choose two nodes ui and uj such that wi and wj are

adjacent. Then, uiPiwiwj
←−
Pjuj is a path from ui to uj with

length of at most 2(
d/2�−1)+1 ≤ d, which contradicts that

ui and uj are d-hop independent. Here,
←−
Pj is the reverse of

Pj .

Next, we discuss the rest of d-hop independent nodes in I .

For 1 ≤ i ≤ s, denote the shortest path from vi to M as Qi

and let Si be the set of nodes which are in N	(d−1)/2
(vi)∩Qi.

Obviously, for each Qi, its length is at least
d2 +1�. Consider

any two nodes vi, vj ∈ B. We are to show that any node

in Si is not adjacent to any node in Sj . Suppose there are

two nodes w ∈ Si, z ∈ Sj and w is adjacent to z. Then,

there exists a path from vi to vj which contains w and z,

and the length of this path is at most 2�(d − 1)/2	 + 1 ≤ d,

which contradicts that vi and vj are d-hop independent. Hence,

A0.5(Si) does not intersect with A0.5(Sj). Since Qi is the

shortest path from vi to M , any node in Qi is not adjacent to

its second successor. Thus, Si contains at least
 12�(d−1)/2	�
disjointed nodes which also means they are 1-hop independent.

That is to say, one d-hop independent node corresponds to

 12�(d − 1)/2	� 1-hop independent nodes. Moreover, for any

node w ∈ Si, the hop distance from w to M is greater than

d/2+1�−�(d−1)/2	 ≥ 1, which means w is not in A0.5(M).
According to the result in Sec. V-A, we have

s ≤
Ad+0.5(M)−A0.5(M)√

3/2
− 0.0718

1
2
�d− 1

2
	�

.

Combining the Inequality (1) and A0.5(M) ≥ π/4, we have

s ≤
π(d+

1

2
)2 + (γ(G)− 1)ΔS − 0.8572
√
3

2

1
2
�d− 1

2
	�

.

Consequently, we obtain a new upper bound as follows:

α(G) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(d+ 1
2)

2 + (γ(G)− 1)ΔS
√
3
2

− 0.0718,

if d ≤ 2,
π(d+ 1

2)
2 + (γ(G)− 1)ΔS − 0.8572

√
3
2
 12�d−1

2 	�
+3.399γ(G) + 4.874, if d ≥ 3.

(7)

Let λ be the ratio of α(G) and γ(G). Then, we have

λ =

⎧⎪⎪⎨
⎪⎪⎩

ΔS√
3/2

, if d ≤ 2,

ΔS
√
3
2
 12�d−1

2 	�
+ 3.399, if d ≥ 3.

(8)

With numerical method, we can conclude that the value of

λ is maximum when d = 6 and is equal to 18.4. Moreover,

when d → ∞, λ → 12.6366. Therefore, for arbitrary value

of d, the value of λ is no more than 18.4. In this sense, λ
has little relation to d. Therefore, our analysis improve the

previous O(d) into O(1). This is a huge improvement in the

related area.

VI. PERFORMANCE ANALYSIS

In this section, we discuss the approximation ratio of CS-

Cluster. Assume the size of an optimal d-MCDS is opt.
Through Alg. 1, we get a d-MIS, namely the set M . According

to the analysis in Sec. V, we have |M | ≤ λopt. As for Alg. 2,

we have Lemma 4 below.

Lemma 4. The total number of connectors selected in Alg. 2,

namely C\M , is at most 2dλopt.

Proof: In the first round, as we described above, Alg. 2 is

to connect all r(1)-hop connected components into one r(1)-
hop connected component. Moreover, before the end of the

current round, there always exists one node that can r(1)-hop

connect two r(1)-hop connected components. Let v be that

703

�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

0 200 400 600 800 1000
0

100

200

300

400

500

600

Number of Nodes

A
v
e

ra
g

e
d
�

C
D

S
S

iz
e

� ����� ��	�
��
�

� ���������
 ���
��� ��	� �

� ���������

(a). Comparison when d = 2

� �
� �

�
� �

� �
�
� �

�
� �

� �
� �

�

�
�

�

�
�

�
�
�
�
�
�
�
�

�
�
�

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

0 200 400 600 800 1000
0

100

200

300

400

Number of Nodes

A
v
e

ra
g

e
d
�

C
D

S
S

iz
e

� ����� ��	�
��
�

� ���������
 ���
��� ��	� �

� ���������

(b). Comparison when d = 3

� �
�
� �

� �
� �

� �
� � �

� �
� �

� �

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

0 200 400 600 800 1000
0

100

200

300

400

Number of Nodes

A
v
e

ra
g

e
d
�

C
D

S
S

iz
e

� ����� ��	�
��
�

� ���������
 ���
��� ��	� �

� ���������

(c). Comparison when d = 4

Fig. 6. Performance comparison between CS-Cluster and Gao’s algorithm in [28] in different cases where d = 2, 3, 4 respectively.

node. Then we have

cost(v) ≥ 1

r(0)− 1
=

1

2d
.

Since Alg. 2 always selects the node with largest value in each

iteration, the node that is chosen in this iteration has the value

of at least cost(v). Consequently, for each node in C1, the

value is at least 1
2d when it is chosen.

There exists an alternative algorithm to connect M . For

each node v ∈ C1, when it is chosen, assume the number

of r(1)-hop connected components it can r(1)-hop connect is

comp(v). We select all the nodes in the shortest paths from v
to the comp(v) r(1)-hop connected components. Obviously,

all those chosen nodes can connect M into a d-CDS. Besides,

the size of Ci is at most |M | − 1 because each node in Ci

can reduce at least one r(1)-hop component and the number

of the original r(1)-hop connected components is at most |M |
when Alg. 2 begins. Thus, the size of these connectors is∑

v∈C1

no.(v) ≤
∑
v∈C1

comp(v)

cost(v)
≤ 2d|M |.

Similarly, in the ith round, for each node in Ci, the value

when it is chosen is at least 1
r(i−1)−1 . The initial number of

r(i)-hop connected components is no more than

|M |+
i−1∑
j=1

|Cj | ≤ 2i−1|M |.

There also exists an alternative algorithm to connect M∪j<iCi

into a d-CDS, and the size of the corresponding connectors is∑
v∈Ci

no.(v) ≤
∑
v∈Ci

comp(v)

cost(v)
≤ (r(i− 1)− 1)2i−1|M |.

Since

(r(i− 1)− 1)2i−1 = (�r(i− 2) + 1

2
	 − 1) · 2 · 2i−2

≤ (r(i− 2)− 1)2i−2

. . .
≤ r(0)− 1 = 2d,

we have ∑
v∈Ci

no.(v) ≤ 2d|M |.

Finally, in the tth round where r(t) = 1, Alg. 2 does the

same with its corresponding alternative algorithm. Therefore,

|C\M | = ∑
v∈Ct

no.(v) ≤ 2d|M |, and Lemma 4 follows.

From the procedure of proof above, it not difficult to

conclude the following corollary.

Corollary 1. After the ith round, Alg. 2 will indicate a feasible

solution Fi with size
∑

v∈Ci
no.(v) which alone can connect

M into d-CDS. Moreover, the size of Fi is no more than Fi−1.

With Lemma 4, we can finally get the following theorem.

Theorem 2. Our three-phase algorithm CS-Cluster has an

approximation ratio of (2d+ 1)λ.

VII. SIMULATION

In this section, we compare CS-Cluster with previous lit-

erature [28] for the same problem (refer as Gao’s algorithm),

which is the most related work for d-MCDS problem. In our

simulations, we randomly deploy sensor nodes in a 2D virtual

space. The number of nodes varies from 50 to 1000 at intervals

of 50. Each two nodes can connect to each other when the

distance between them is at most 1. Moreover, we also ensure

that the generated graph is connected.

Fig. 6(a)-(c) exhibit the performance comparisons between

two algorithms with different d. From the figure, we can

conclude that CS-Cluster’s always performs better than Gao’s

algorithm under different settings. Moreover, when d increas-

es, the superiority of CS-Cluster also increases. Considering

the great influence of Alg. 3, we also compare the performance

of CS-Cluster without Alg. 3 with Gao’s algorithm. From

Fig. 6, we find that CS-Cluster without Alg. 3 still produces

(a). 2-CDS by Gao’s algorithm (b). 2-CDS by CS-Cluster

Fig. 7. A sample of UDG which contains 122 nodes. Gao’s algorithm selects
a 2-CDS with 49 nodes while CS-Cluster selects a 2-CDS with 36 nodes.

704

smaller d-CDS than Gao’s algorithm. We think that the great

advantage of CS-Cluster comes to the sparsity of d-MIS by

Alg. 1, the flexibility of Alg. 2, and the feature of non-

redundancy by Alg. 3.

Fig. 7 shows a sample comparison between two algorithms

with 112 input nodes where d = 2. We can clearly see the

superiority of CS-Cluster since Gao’s algorithm constructs a

2-CDS with 49 nodes while CS-Cluster only uses 36 nodes.

VIII. CONCLUSION

In this paper, we studied the multi-hop connected clustering

problem for a given wireless sensor network, which can be

formed as finding a minimum d-hop connected dominating

set problem (d-MCDS) for a given graph. We then proposed a

distributed approximation algorithm named Connected Sparse

Clustering Scheme (CS-Cluster) to solve the problem. CS-

Cluster consists of three phases: dominator selection, con-

nector insertion, and redundancy elimination. To evaluate the

performance of CS-Cluster, we estimated the upper bound λ
for the dominator size in a unit disk graph, and proved that

λ is no more than 18.4. As a result, we reduce the bound

of O(d) from previous literature [29] to O(1), and achieved

an approximation ratio of (2d+ 1)λ for CS-Cluster, which is

the best constant-factor approximation up to now. In all, CS-

Cluster is flexible to obtain a nearly optimal d-MCDS and is

suitable for distributed environments. Our simulation results

also exhibited the outstanding performance of CS-Cluster.

ACKNOWLEDGEMENT

This work has been supported in part by the Na-

tional Natural Science Foundation of China (Grant num-

ber 61202024, 61472252, 61133006, 61422208), China 973

project (2012CB316201), Shanghai Educational Development

Foundation (Chenguang Grant No.12CG09), Shanghai Pujiang

Program 13PJ1403900, the Natural Science Foundation of

Shanghai (Grant No.12ZR1445000), and in part by Jiangsu

Future Network Research Project No. BY2013095-1-10 and

CCF-Tencent Open Fund.

REFERENCES

[1] J. Wang, Z. Cao, X. Mao, and Y. Liu, “Sleep in the dins: Insomnia
therapy for duty-cycled sensor networks,” in IEEE INFOCOM, 2014.

[2] S. Guo, C. Wang, and Y. Yang, “Mobile data gathering with wireless
energy replenishment in rechargeable sensor networks,” in IEEE INFO-

COM, 2013.

[3] Q. Liao, L. Shi, Y. He, R. Li, Z. Su, A. Striegel, and Y. Liu, “Visualizing
anomalies in sensor networks,” in ACM SIGCOMM, vol. 41, no. 4, 2011.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[5] X. Fang, H. Gao, J. Li, and Y. Li, “Approximate multiple count in
wireless sensor networks,” in IEEE INFOCOM, 2014.

[6] C. Schurgers and M. B. Srivastava, “Energy efficient routing in wireless
sensor networks,” in IEEE MILCOM, vol. 1, 2001.

[7] C.-R. Dow, P.-J. Lin, S.-C. Chen, J.-H. Lin, and S.-F. Hwang, “A study
of recent research trends and experimental guidelines in mobile ad-hoc
network,” in IEEE AINA, vol. 1, 2005.

[8] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” in IEEE INFOCOM,
vol. 3, 2003.

[9] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor
networks: A hybrid, energy-efficient approach,” in IEEE INFOCOM,
2004.

[10] J. Ma, W. Lou, Y. Wu, M. Li, and G. Chen, “Energy efficient TDMA
sleep scheduling in wireless sensor networks,” in IEEE INFOCOM,
2009.

[11] Y. Zhuang, J. Pan, and L. Cai, “Minimizing energy consumption with
probabilistic distance models in wireless sensor networks,” in IEEE

INFOCOM, 2010.
[12] M. Alaei and J. M. Barcelo-Ordinas, “Node clustering based on over-

lapping fovs for wireless multimedia sensor networks,” in IEEE WCNC,
2010.

[13] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Transactions on

Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.
[14] A. D. Amis, R. Prakash, T. H. Vuong, and D. T. Huynh, “Max-min

d-cluster formation in wireless ad hoc networks,” in IEEE INFOCOM,
2000.

[15] Y. Fernandess and D. Malkhi, “k-clustering in wireless ad hoc net-
works,” in ACM POMC, 2002.

[16] F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic, “Connectivity based
k-hop clustering in wireless networks,” Telecommunication systems,
vol. 22, no. 1-4, pp. 205–220, 2003.

[17] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Annals of Discrete Mathematics, vol. 48, pp. 165–177, 1991.

[18] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction
of connected dominating set in wireless ad hoc networks,” in IEEE

INFOCOM, 2002.
[19] W. Wu, H. Du, X. Jia, Y. Li, and S. Huang, “Minimum connected

dominating sets and maximal independent sets in unit disk graphs,”
Theoretical Computer Science, vol. 352, no. 1, pp. 1–7, 2006.

[20] X. Gao, Y. Wang, X. Li, and W. Wu, “Analysis on theoretical bounds
for approximating dominating set problems,” Discrete Mathematics,

Algorithms and Applications, vol. 1, no. 01, pp. 71–84, 2009.
[21] M. Li, P.-J. Wan, and F. Yao, “Tighter approximation bounds for

minimum CDS in unit disk graphs,” Algorithmica, vol. 61, no. 4, pp.
1000–1021, 2011.

[22] Y. Du and H. Du, “A new bound on maximum independent set and
minimum connected dominating set in unit disk graphs,” Journal of

Combinatorial Optimization, 2013, online Published.
[23] T. Vuong and D. Huynh, “Adapting d-hop dominating sets to topology

changes in ad hoc networks,” in IEEE ICCCN, 2000.
[24] T. N. Nguyen and D. T. Huynh, “Connected d-hop dominating sets in

mobile ad hoc networks,” in IEEE WiOpt, 2006.
[25] D. Cokuslu and K. Erciyes, “A hierarchical connected dominating

set based clustering algorithm for mobile ad hoc networks,” in IEEE

MASCOTS, 2007.
[26] M. Q. Rieck, S. Pai, and S. Dhar, “Distributed routing algorithms for

multi-hop ad hoc networks using d-hop connected d-dominating sets,”
Computer networks, vol. 47, no. 6, pp. 785–799, 2005.

[27] X. Li and Z. Zhang, “Two algorithms for minimum 2-connected r-hop
dominating set,” Information Processing Letters, vol. 110, no. 22, pp.
986–991, 2010.

[28] X. Gao, W. Wu, X. Zhang, and X. Li, “A constant-factor approximation
for d-hop connected dominating sets in unit disk graph,” International

Journal of Sensor Networks, vol. 12, no. 3, pp. 125–136, 2012.
[29] Z. Zhang, Q. Liu, and D. Li, “Two algorithms for connected r-hop

k-dominating set,” Discrete Mathematics, Algorithms and Applications,
vol. 1, no. 04, pp. 485–498, 2009.

[30] X. Zhu, J. Li, Y. Xia, X. Gao, and G. Chen, “An efficient distributed
node clustering protocol for high dimensional large-scale wireless sensor
networks,” in ACM ICUIMC, no. 4, 2014.

[31] W. Wang, D. Kim, N. Sohaee, C. Ma, and W. Wu, “A PTAS for
minimum d-hop underwater sink placement problem in 2d underwater
sensor networks,” Discrete Mathematics, Algorithms and Applications,
vol. 1, no. 2, pp. 283–289, 2009.

[32] D. Kim, W. Wang, N. Sohaee, C. Ma, W. Wu, W. Lee, and D.-Z. Du,
“Minimum data latency bound k-sinks placement problem in wireless
sensor networks,” IEEE/ACM Transactions on Networking, vol. 19,
no. 5, pp. 1344–1353, 2011.

705

